Discovering Knowledge-Sharing Communities in Question-Answering Forums

Author:

Bouguessa Mohamed1,Wang Shengrui1,Dumoulin Benoit2

Affiliation:

1. Université du Québec en Outaouais

2. Yahoo! Inc.

Abstract

In this article, we define a knowledge-sharing community in a question-answering forum as a set of askers and authoritative users such that, within each community, askers exhibit more homogeneous behavior in terms of their interactions with authoritative users than elsewhere. A procedure for discovering members of such a community is devised. As a case study, we focus on Yahoo! Answers, a large and diverse online question-answering service. Our contribution is twofold. First, we propose a method for automatic identification of authoritative actors in Yahoo! Answers. To this end, we estimate and then model the authority scores of participants as a mixture of gamma distributions. The number of components in the mixture is determined using the Bayesian Information Criterion (BIC), while the parameters of each component are estimated using the Expectation-Maximization (EM) algorithm. This method allows us to automatically discriminate between authoritative and nonauthoritative users. Second, we represent the forum environment as a type of transactional data such that each transaction summarizes the interaction of an asker with a specific set of authoritative users. Then, to group askers on the basis of their interactions with authoritative users, we propose a parameter-free transaction data clustering algorithm which is based on a novel criterion function. The identified clusters correspond to the communities that we aim to discover. To evaluate the suitability of our clustering algorithm, we conduct a series of experiments on both synthetic data and public real-life data. Finally, we put our approach to work using data from Yahoo! Answers which represent users’ activities over one full year.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A graph convolutional fusion model for community detection in multiplex networks;Data Mining and Knowledge Discovery;2023-04-06

2. Identification of network behavioral characteristics of high-expertise users in interactive innovation: The case of forum autohome;Asia Pacific Management Review;2021-03

3. Community Mining and Cross-Community Discovery in Online Social Networks;Advances in Intelligent Systems and Computing;2020-08-20

4. Translations Diversification for Expert Finding;ACM Transactions on Knowledge Discovery from Data;2019-07-17

5. Node similarity and modularity for finding communities in networks;Physica A: Statistical Mechanics and its Applications;2018-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3