An Evaluation Method of Acceptable and Failed Spot Welding Products Based on Image Classification with Transfer Learning Technique
Author:
Affiliation:
1. School of Aerospace Engineering, Xiamen University, China
2. School of Electronic Science and Technology, Xiamen University, China
Publisher
ACM Press
Reference21 articles.
1. Ishaya ZD, Dauda M, and Pam GY, et al. 2013. Destructive testing and production system integrity. Advances in Applied Science Research, 4, 4(2013), 184--189.
2. Xiaodong Wan, Yuanxun Wang and Dawei Zhao. 2018. Quality Estimation in Small Scale Resistance Spot Welding of Titanium Alloy Based on Dynamic Electrical Signals. ISIJ International, 58, 4(2018), 721--726.
3. Xingjue Wang, and Junhong Zhou, et al. 2018. Quality monitoring of spot welding with advanced signal processing and data-driven techniques. Transactions of the Institute of Measurement and Control, 40, 7(2018), 2291--2302.
4. Hongjie Zhang, and Yanyan Hou, et al. 2015. A new method for nondestructive quality evaluation of the resistance spot welding based on the radar chart method and the decision tree classifier. Int J Adv Manuf Technol, 78, 5--8(2015), 841--851.
5. Samo Simončič and Primož Podržaj. 2012. Image-based electrode tip displacement in resistance spot welding. Measurement Science and Technology, 23, 6(2012).
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. CNN-based classification of the laser assembly process for ultra-small batteries;Journal of Mechanical Science and Technology;2023-12
2. A CNN-LSTM and Attention-Mechanism-Based Resistance Spot Welding Quality Online Detection Method for Automotive Bodies;Mathematics;2023-11-07
3. Deep learning approach for defective spot welds classification using small and class-imbalanced datasets;Neurocomputing;2022-03
4. Classification of operation cases in electric arc welding wachine by using deep convolutional neural networks;Neural Computing and Applications;2020-10-20
5. Product Classification Using Neural Network at Industry Robotic Line;Research Papers Faculty of Materials Science and Technology Slovak University of Technology;2019-09-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3