Improving Performance and Energy Consumption in Embedded Systems via Binary Acceleration: A Survey

Author:

Paulino Nuno1ORCID,Ferreira João Canas1,Cardoso João M. P.1

Affiliation:

1. INESC TEC and Faculty of Engineering of the University of Porto

Abstract

The breakdown of Dennard scaling has resulted in a decade-long stall of the maximum operating clock frequencies of processors. To mitigate this issue, computing shifted to multi-core devices. This introduced the need for programming flows and tools that facilitate the expression of workload parallelism at high abstraction levels. However, not all workloads are easily parallelizable, and the minor improvements to processor cores have not significantly increased single-threaded performance. Simultaneously, Instruction Level Parallelism in applications is considerably underexplored. This article reviews notable approaches that focus on exploiting this potential parallelism via automatic generation of specialized hardware from binary code. Although research on this topic spans over more than 20 years, automatic acceleration of software via translation to hardware has gained new importance with the recent trend toward reconfigurable heterogeneous platforms. We characterize this kind of binary acceleration approach and the accelerator architectures on which it relies. We summarize notable state-of-the-art approaches individually and present a taxonomy and comparison. Performance gains from 2.6× to 5.6× are reported, mostly considering bare-metal embedded applications, along with power consumption reductions between 1.3× and 3.9×. We believe the methodologies and results achievable by automatic hardware generation approaches are promising in the context of emergent reconfigurable devices.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3