Multilayer Graphene Nanoribbon and Carbon Nanotube Based Floating Gate Transistor for Nonvolatile Flash Memory

Author:

Hossain Nahid M.1,Chowdhury Masud H.1

Affiliation:

1. University of Missouri -- Kansas City

Abstract

Floating gate transistor is the fundamental building block of nonvolatile flash memory, which is one of the most widely used memory gadgets in modern micro and nano electronic applications. Recently there has been a surge of interest to introduce a new generation of memory devices using graphene nanotechnology. In this article, we present a new floating gate transistor (FGT) design based on multilayer graphene nanoribbon (MLGNR) and carbon nanotube (CNT). In the proposed FGT, a MLGNR structure would be used as the channel of the field effect transistor (FET) and a layer of CNTs would be used as the floating gate. We have performed an analysis of the programming and erasing mechanism in the floating gate and its dependence on the applied control gate voltages. Based on our analysis we have observed that proposed graphene based floating gate transistor could be operated at a low voltage compared to conventional silicon based floating gate devices. We have presented detail analysis of the operation and the programming and erasing processes of the proposed FGT; the dependency of the programming and erasing current density on different parameters; and the impact of scaling the thicknesses of the control and tunneling oxides. To perform these analyses we have developed equivalent models for device capacitances.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Reference55 articles.

1. Carbon nanotube electronics

2. Roll-to-roll production of 30-inch graphene films for transparent electrodes;Bae Sukang;Nanotechnology,2010

3. Fabrication and electrical properties of graphene nanoribbons;Bai J.;Mat. Sci. Eng.,2010

4. Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3