Effects of Personalized and Aggregate Top-N Recommendation Lists on User Preference Ratings

Author:

Adomavicius Gediminas1,Bockstedt Jesse2,Curley Shawn1,Zhang Jingjing3

Affiliation:

1. University of Minnesota, Minneapolis, Minnesota

2. Emory University, Atlanta, Georgia

3. Indiana University, Bloomington, Indiana

Abstract

Prior research has shown a robust effect of personalized product recommendations on user preference judgments for items. Specifically, the display of system-predicted preference ratings as item recommendations has been shown in multiple studies to bias users’ preference ratings after item consumption in the direction of the predicted rating. Top-N lists represent another common approach for presenting item recommendations in recommender systems. Through three controlled laboratory experiments, we show that top-N lists do not induce a discernible bias in user preference judgments. This result is robust, holding for both lists of personalized item recommendations and lists of items that are top-rated based on averages of aggregate user ratings. Adding numerical ratings to the list items does generate a bias, consistent with earlier studies. Thus, in contexts where preference biases are of concern to an online retailer or platform, top-N lists, without numerical predicted ratings, would be a promising format for displaying item recommendations.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3