Affiliation:
1. Carleton University, Ontario, Canada
Abstract
A smart power grid transforms the traditional electric grid into a user-centric, intelligent power network. The cost-saving potential of smart homes is an excellent motivating factor to involve users in smart grid operations. To that end, this survey explores the contemporary cost-saving strategies for smart grids from the users’ perspective. The study shows that optimization methods are the most popular cost-saving techniques reported in the literature. These methods are used to plan scheduling and power utilization schemes of household appliances, energy storages, renewables, and other energy generation devices. The survey shows that trading energy among neighborhoods is one of the effective methods for cost optimization. It also identifies the prediction methods that are used to forecast energy price, generation, and consumption profiles, which are required to optimize energy cost in advance. The contributions of this article are threefold. First, it discusses the computational methods reported in the literature with their significance and limitations. Second, it identifies the components and their characteristics that may reduce energy cost. Finally, it proposes a unified cost optimization framework and addresses the challenges that may influence the overall residential energy cost optimization problem in smart grids.
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献