Efficient Convex Optimization Requires Superlinear Memory

Author:

Marsden Annie1ORCID,Sharan Vatsal2ORCID,Sidford Aaron1ORCID,Valiant Gregory1ORCID

Affiliation:

1. Stanford University, Stanford, United States

2. University of Southern California, Los Angeles, United States

Abstract

We show that any memory-constrained, first-order algorithm which minimizes d -dimensional, 1-Lipschitz convex functions over the unit ball to 1/poly( d ) accuracy using at most d 1.25 − δ bits of memory must make at least \(\tilde{\Omega }(d^{1 + (4/3)\delta }) \) first-order queries (for any constant δ ∈ [0, 1/4]). Consequently, the performance of such memory-constrained algorithms are at least a polynomial factor worse than the optimal \(\tilde{O}(d) \) query bound for this problem obtained by cutting plane methods that use \(\tilde{O}(d^2) \) memory. This resolves one of the open problems in the COLT 2019 open problem publication of Woodworth and Srebro.

Publisher

Association for Computing Machinery (ACM)

Reference78 articles.

1. Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric Renggli. 2018. The convergence of sparsified gradient methods. Advances in Neural Information Processing Systems 31 (2018).

2. The Space Complexity of Approximating the Frequency Moments

3. The Volumetric Barrier for Semidefinite Programming

4. Yossi Arjevani and Ohad Shamir. 2015. Communication complexity of distributed convex learning and optimization. Advances in neural information processing systems 28 (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3