Core Placement Optimization for Multi-chip Many-core Neural Network Systems with Reinforcement Learning

Author:

Wu Nan1,Deng Lei1,Li Guoqi2,Xie Yuan1

Affiliation:

1. University of California, Santa Barbara, CA, USA

2. Tsinghua University, Beijing, China

Abstract

Multi-chip many-core neural network systems are capable of providing high parallelism benefited from decentralized execution, and they can be scaled to very large systems with reasonable fabrication costs. As multi-chip many-core systems scale up, communication latency related effects will take a more important portion in the system performance. While previous work mainly focuses on the core placement within a single chip, there are two principal issues still unresolved: the communication-related problems caused by the non-uniform, hierarchical on/off-chip communication capability in multi-chip systems, and the scalability of these heuristic-based approaches in a factorially growing search space. To this end, we propose a reinforcement-learning-based method to automatically optimize core placement through deep deterministic policy gradient, taking into account information of the environment by performing a series of trials (i.e., placements) and using convolutional neural networks to extract spatial features of different placements. Experimental results indicate that compared with a naive sequential placement, the proposed method achieves 1.99× increase in throughput and 50.5% reduction in latency; compared with the simulated annealing, an effective technique to approximate the global optima in an extremely large search space, our method improves the throughput by 1.22× and reduces the latency by 18.6%. We further demonstrate that our proposed method is capable to find optimal placements taking advantages of different communication properties caused by different system configurations, and work in a topology-agnostic manner.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3