Strong Locally Testable Codes with Relaxed Local Decoders

Author:

Goldreich Oded1,Gur Tom2,Komargodski Ilan3

Affiliation:

1. Weizmann Institute of Science, Rehovot, Israel

2. University of Warwick, UK

3. Cornell Tech, New York, USA

Abstract

Locally testable codes (LTCs) are error-correcting codes that admit very efficient codeword tests. An LTC is said to be strong if it has a proximity-oblivious tester, that is, a tester that makes only a constant number of queries and rejects non-codewords with a probability that depends solely on their distance from the code. Locally decodable codes (LDCs) are complementary to LTCs. While the latter allow for highly efficient rejection of strings that are far from being codewords, LDCs allow for highly efficient recovery of individual bits of the information that is encoded in strings that are close to being codewords. Constructions of strong-LTCs with nearly-linear length are known, but the existence of a constant-query LDC with polynomial length is a major open problem. In an attempt to bypass this barrier, Ben-Sasson et al. (SICOMP 2006) introduced a natural relaxation of local decodability, called relaxed-LDCs. This notion requires local recovery of nearly all individual information-bits, yet allows for recovery-failure (but not error) on the rest. Ben-Sasson et al. constructed a constant-query relaxed-LDC with nearly-linear length (i.e., length k 1+α for an arbitrarily small constant α > 0, where k is the dimension of the code). This work focuses on obtaining strong testability and relaxed decodability simultaneously . We construct a family of binary linear codes of nearly-linear length that are both strong-LTCs (with one-sided error) and constant-query relaxed-LDCs. This improves upon the previously known constructions, which either obtain only weak LTCs or require polynomial length. Our construction heavily relies on tensor codes and PCPs. In particular, we provide strong canonical PCPs of proximity for membership in any linear code with constant rate and relative distance. Loosely speaking, these are PCPs of proximity wherein the verifier is proximity oblivious (similarly to strong-LTCs) and every valid statement has a unique canonical proof. Furthermore, the verifier is required to reject non-canonical proofs (even for valid statements). As an application, we improve the best known separation result between the complexity of decision and verification in the setting of property testing.

Funder

Israel Science Foundation

Packard Foundation Fellowship and by an AFOSR

I-CORE Program of the Planning and Budgeting Committee, the Israel Science Foundation, and the Citi Foundation

Centre for Discrete Mathematics and its Applications (DIMAP), EPSRC

Minerva Foundation with funds from the Federal German Ministry for Education and Research

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Proofs of Proximity;Quantum;2022-10-13

2. Relaxed Locally Decodable and Correctable Codes: Beyond Tensoring;2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS);2022-10

3. Smooth and Strong PCPs;computational complexity;2021-01-06

4. Relaxed Locally Correctable Codes;Theory of Computing;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3