Error Detector Placement for Soft Computing Applications

Author:

Thomas Anna1,Pattabiraman Karthik1

Affiliation:

1. University of British Columbia

Abstract

The scaling of Silicon devices has exacerbated the unreliability of modern computer systems, and power constraints have necessitated the involvement of software in hardware error detection. At the same time, emerging workloads in the form of soft computing applications (e.g., multimedia applications) can tolerate most hardware errors as long as the erroneous outputs do not deviate significantly from error-free outcomes. We term outcomes that deviate significantly from the error-free outcomes as Egregious Data Corruptions (EDCs). In this study, we propose a technique to place detectors for selectively detecting EDC-causing errors in an application. We performed an initial study to formulate heuristics that identify EDC-causing data. Based on these heuristics, we developed an algorithm that identifies program locations for placing high coverage detectors for EDCs using static analysis. Our technique achieves an average EDC coverage of 82%, under performance overheads of 10%, while detecting 10% of the Non-EDC and benign faults. We also evaluate the error resilience of these applications under the 14 compiler optimizations.

Funder

Discovery Grant and an Engage Grant from the Natural Science and Engineering Research Council (NSERC), Canada

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliability Analysis for Programs with Redundancy Computation for Soft Errors;Journal of Physics: Conference Series;2023-06-01

2. Software Application of Control and Compensation for EAST Articulated Maintenance Arm;2022 China Automation Congress (CAC);2022-11-25

3. Silent Data Corruption Estimation and Mitigation Without Fault Injection;IEEE Canadian Journal of Electrical and Computer Engineering;2022

4. Leto: verifying application-specific hardware fault tolerance with programmable execution models;Proceedings of the ACM on Programming Languages;2018-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3