Private and Online Learnability Are Equivalent

Author:

Alon Noga1,Bun Mark2,Livni Roi3,Malliaris Maryanthe4,Moran Shay5ORCID

Affiliation:

1. Princeton University and Tel Aviv University

2. Boston University, Boston, MA, USA

3. Tel Aviv University

4. University of Chicago, IL, USA

5. Technion, Haifa, Israel

Abstract

Let H be a binary-labeled concept class. We prove that H can be PAC learned by an (approximate) differentially private algorithm if and only if it has a finite Littlestone dimension. This implies a qualitative equivalence between online learnability and private PAC learnability.

Funder

NSF

BSF

CAREER

ISF

NSF CAREER

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference79 articles.

1. Jacob D. Abernethy, Elad Hazan, and Alexander Rakhlin. 2008. Competing in the dark: An efficient algorithm for bandit linear optimization. In Proceedings of the 21st Annual Conference on Learning Theory (COLT’08). 263–274.

2. Online learning via differential privacy;Abernethy Jacob D.;CoRR,2017

3. Naman Agarwal and Karan Singh. 2017. The price of differential privacy for online learning. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017 (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.). Vol. 70. PMLR, 32–40. http://proceedings.mlr.press/v70/agarwal17a.html.

4. Closure properties for private classification and online prediction;Alon Noga;arXiv preprint arXiv:2003.04509,2020

5. Private PAC learning implies finite Littlestone dimension

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. No Complete Problem for Constant-Cost Randomized Communication;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

2. IPOC: An Adaptive Interval Prediction Model based on Online Chasing and Conformal Inference for Large-Scale Systems;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

3. Optimal Differentially Private Learning of Thresholds and Quasi-Concave Optimization;Proceedings of the 55th Annual ACM Symposium on Theory of Computing;2023-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3