DFT Assisted Techniques for Peak Launch-to-Capture Power Reduction during Launch-On-Shift At-Speed Testing

Author:

Potluri Seetal1,Trinadh A. Satya2,Ch. Sobhan Babu2,Kamakoti V.1,Chandrachoodan Nitin1

Affiliation:

1. IIT Madras

2. IIT Hyderabad

Abstract

Scan-based testing is crucial to ensuring correct functioning of chips. In this scheme, the scan and capture phases are interleaved. It is well known that for large designs, excessive switching activity during the launch-to-capture window leads to high voltage droop on the power grid, ultimately resulting in false delay failures during at-speed test. This article proposes a new design-for-testability (DFT) scheme for launch-on-shift (LOS) testing, which ensures that the combinational logic remains undisturbed between the interleaved capture phases, providing computer-aided-design (CAD) tools with extra search space for minimizing launch-to-capture switching activity through test pattern ordering (TPO). We further propose a new TPO algorithm that keeps track of the don't cares during the ordering process, so that the don't care filling step after the ordering process yields a better reduction in launch-to-capture switching activity compared to any other technique in the literature. The proposed DFT-assisted technique, when applied to circuits in ITC99 benchmark suite, produces an average reduction of 17.68% in peak launch-to-capture switching activity (CSA) compared to the best known lowpower TPO technique. Even for circuits whose test cubes are not rich in don't care bits, the proposed technique produces an average reduction of 15% in peak CSA, while for the circuits with test cubes rich in don't care bits (≥75%), the average reduction is 24%. The proposed technique also reduces the average power dissipation (considering both scan cells and combinational logic) during the scan phase by about 43.5% on an average, compared to the adjacent filling technique.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SeqL: Secure Scan-Locking for IP Protection;2020 21st International Symposium on Quality Electronic Design (ISQED);2020-03

2. Cell-Aware ATPG to Improve Defect Coverage for FPGA IPs and Next Generation Zynq® MPSoCs;2017 IEEE 26th Asian Test Symposium (ATS);2017-11

3. Scan Chain Grouping for Mitigating IR-Drop-Induced Test Data Corruption;2017 IEEE 26th Asian Test Symposium (ATS);2017-11

4. Optimal Don’t Care Filling for Minimizing Peak Toggles During At-Speed Stuck-At Testing;ACM Transactions on Design Automation of Electronic Systems;2017-10-17

5. Low-Power Scan-Based Built-In Self-Test Based on Weighted Pseudorandom Test Pattern Generation and Reseeding;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2017-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3