The graph camera

Author:

Popescu Voicu1,Rosen Paul1,Adamo-Villani Nicoletta1

Affiliation:

1. Purdue University

Abstract

A conventional pinhole camera captures only a small fraction of a 3-D scene due to occlusions. We introduce the graph camera, a non-pinhole with rays that circumvent occluders to create a single layer image that shows simultaneously several regions of interest in a 3-D scene. The graph camera image exhibits good continuity and little redundancy. The graph camera model is literally a graph of tens of planar pinhole cameras. A fast projection operation allows rendering in feed-forward fashion, at interactive rates, which provides support for dynamic scenes. The graph camera is an infrastructure level tool with many applications. We explore the graph camera benefits in the contexts of virtual 3-D scene exploration and summarization, and in the context of real-world 3-D scene visualization. The graph camera allows integrating multiple video feeds seamlessly, which enables monitoring complex real-world spaces with a single image.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PreVR: Variable-Distance Previews for Higher-Order Disocclusion in VR;IEEE Transactions on Visualization and Computer Graphics;2024-05

2. AR Interfaces for Disocclusion—A Comparative Study;2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR);2023-03

3. Toward Intuitive Acquisition of Occluded VR Objects Through an Interactive Disocclusion Mini-map;2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR);2023-03

4. Quantifiable Fine-Grain Occlusion Removal Assistance for Efficient VR Exploration;IEEE Transactions on Visualization and Computer Graphics;2021

5. View Splicing for Effective VR Collaboration;2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR);2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3