Understanding election candidate approval ratings using social media data

Author:

Contractor Danish1,Faruquie Tanveer Afzal1

Affiliation:

1. IBM Research India, New Delhi, India

Publisher

ACM Press

Reference5 articles.

1. J. E. Chung and E. Mustafaraj. Can collective sentiment expressed on twitter predict political elections? In Proceedings of the AAAI Conference on Artificial Intelligence, 2011.

2. C. W. J. Granger. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3):424--438, Aug. 1969.

3. B. O'Connor, R. Balasubramanyan, B. R. Routledge, and N. A. Smith. From tweets to polls: Linking text sentiment to public opinion time series. In Proceedings of the International Conference on Weblogs and Social Media (ICWSM), 2010.

4. E. T. K. Sang and J. Bos. Predicting the 2011 dutch senate election results with twitter. In Proceedings of the Workshop on Semantic Analysis in Social Media, 2012.

5. C. William and G. Gulati. What is a social network with facebook and vote share in the 2008 presidential primaries. In Annual Meeting of American Political Science Association, 2008.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Democracy at Crossroads: A Meta-Analysis of Web and AI Influence on Global Elections;Companion Proceedings of the ACM Web Conference 2024;2024-05-13

2. NLP-enabled Recommendation of Hashtags for Covid based Tweets using Hybrid BERT-LSTM Model;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-01-16

3. Novel Algorithm to Predict Electoral Trends, Case in Mexico;Communications in Computer and Information Science;2024

4. A Simple Strategy for Handling ‘NOT’ Can Improve the Performance of Sentiment Analysis;Computational Intelligence in Pattern Recognition;2022

5. Understanding Gender Stereotypes and Electoral Success from Visual Self-presentations of Politicians in Social Media;Joint Workshop on Aesthetic and Technical Quality Assessment of Multimedia and Media Analytics for Societal Trends;2020-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3