Online Throughput Maximization on Unrelated Machines: Commitment is No Burden

Author:

Eberle Franziska1ORCID,Megow Nicole2ORCID,Schewior Kevin3ORCID

Affiliation:

1. Department of Mathematics, London School of Economics and Political Science, London, United Kingdom

2. Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany

3. Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark

Abstract

We consider a fundamental online scheduling problem in which jobs with processing times and deadlines arrive online over time at their release dates. The task is to determine a feasible preemptive schedule on a single or multiple possibly unrelated machines that maximizes the number of jobs that complete before their deadline. Due to strong impossibility results for competitive analysis on a single machine, we require that jobs contain some slack ɛ > 0, which means that the feasible time window for scheduling a job is at least 1+ɛ times its processing time on each eligible machine. Our contribution is two-fold: (i) We give the first non-trivial online algorithms for throughput maximization on unrelated machines, and (ii), this is the main focus of our paper, we answer the question on how to handle commitment requirements which enforce that a scheduler has to guarantee at a certain point in time the completion of admitted jobs. This is very relevant, e.g., in providing cloud-computing services, and disallows last-minute rejections of critical tasks. We present an algorithm for unrelated machines that is \(\Theta (\frac{1}{\varepsilon })\) -competitive when the scheduler must commit upon starting a job. Somewhat surprisingly, this is the same optimal performance bound (up to constants) as for scheduling without commitment on a single machine. If commitment decisions must be made before a job’s slack becomes less than a δ-fraction of its size, we prove a competitive ratio of \(\mathcal {O}(\frac{1}{\varepsilon - \delta })\) for 0 < δ < ɛ. This result nicely interpolates between commitment upon starting a job and commitment upon arrival. For the latter commitment model, it is known that no (randomized) online algorithm admits any bounded competitive ratio. While we mainly focus on scheduling without migration, our results also hold when comparing against a migratory optimal solution in case of identical machines.

Funder

Netherlands Organisation for Scientific Research (NWO) through a VIDI

German Science Foundation

Independent Research Fund Denmark, Natural Sciences

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scheduling Firm Real-time Applications on the Edge with Single-bit Execution Time Prediction;2023 IEEE 26th International Symposium on Real-Time Distributed Computing (ISORC);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3