Language Modeling for Syntax-Based Machine Translation Using Tree Substitution Grammars

Author:

Xiao Tong1,Zhu Jingbo1,Zhu Muhua1

Affiliation:

1. Northeastern University

Abstract

The poor grammatical output of Machine Translation (MT) systems appeals syntax-based approaches within language modeling. However, previous studies showed that syntax-based language modeling using (Context-Free) Treebank Grammars was not very helpful in improving BLEU scores for Chinese-English machine translation. In this article we further study this issue in the context of Chinese-English syntax-based Statistical Machine Translation (SMT) where Synchronous Tree Substitution Grammars (STSGs) are utilized to model the translation process. In particular, we develop a Tree Substitution Grammar-based language model for syntax-based MT, and present three methods to efficiently integrate the proposed language model into MT decoding. In addition, we design a simple and effective method to adapt syntax-based language models for MT tasks. We demonstrate that the proposed methods are able to benefit a state-of-the-art syntax-based MT system. On the NIST Chinese-English MT evaluation corpora, we finally achieve an improvement of 0.6 BLEU points over the baseline.

Funder

National Natural Science Foundation of China

Research Grants Council, University Grants Committee, Hong Kong

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference48 articles.

1. Beal M. 2003. Variational algorithms for approximate bayesian inference. Doctoral dissertation. University College London. Beal M. 2003. Variational algorithms for approximate bayesian inference. Doctoral dissertation. University College London.

2. Bonnema R. 2002. Probability models for DOP. Data-Oriented Parsing. CSLI publications. Bonnema R. 2002. Probability models for DOP. Data-Oriented Parsing . CSLI publications.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3