Affiliation:
1. Anhui University, China
2. East China Normal University, China
3. Sul Ross State University, USA
Abstract
The popularity of cyber-physical systems is fueling the rapid growth of location-based services. This poses the risk of location privacy disclosure. Effective privacy preservation is foremost for various mobile applications. Recently, geo-indistinguishability and expected inference error are proposed for limiting location leakages. In this paper, we argue that personalization means regionalization for geo-indistinguishability, and we propose a regionalized location obfuscation mechanism called DPIVE with personalized utility sensitivities. This substantially corrects the differential and distortion privacy problem of PIVE framework proposed by Yu et al. on NDSS 2017. We develop DPIVE with two phases. In Phase I, we determine disjoint sets by partitioning all possible positions such that different locations in the same set share the Protection Location Set (PLS). In Phase II, we construct a probability distribution matrix in which the rows corresponding to the same PLS have their own sensitivity of utility (PLS diameter). Moreover, by designing QK-means algorithm for more search space in 2-D space, we improve DPIVE with refined location partition and present fine-grained personalization, enabling each location to have its own privacy level endowed with a customized privacy budget. Experiments with two public datasets demonstrate that our mechanisms have the superior performance, typically on skewed locations.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Adaptive Cloaking Region Obfuscation in Road Networks;2024 3rd Conference on Fully Actuated System Theory and Applications (FASTA);2024-05-10
2. Mechanisms to Address Different Privacy Requirements for Users and Locations;IEICE Transactions on Information and Systems;2023-12-01