Affiliation:
1. Tel Aviv University, Israel
Abstract
We identify a large family of fully structural propositional sequent systems, which we call
basic systems
. We present a general uniform method for providing (potentially, nondeterministic) strongly sound and complete Kripke-style semantics, which is applicable for every system of this family. In addition, this method can also be applied when: (i) some formulas are not allowed to appear in derivations, (ii) some formulas are not allowed to serve as cut formulas, and (iii) some instances of the identity axiom are not allowed to be used. This naturally leads to new semantic characterizations of analyticity (global subformula property), cut admissibility and axiom expansion in basic systems. We provide a large variety of examples showing that many soundness and completeness theorems for different sequent systems, as well as analyticity, cut admissibility, and axiom expansion results, easily follow using the general method of this article.
Funder
Israel Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献