Recognition of Patient-Related Named Entities in Noisy Tele-Health Texts

Author:

Kim Mi-Young1,Xu Ying1,Zaiane Osmar R.1,Goebel Randy1

Affiliation:

1. University of Alberta, Canada

Abstract

We explore methods for effectively extracting information from clinical narratives that are captured in a public health consulting phone service called HealthLink. Our research investigates the application of state-of-the-art natural language processing and machine learning to clinical narratives to extract information of interest. The currently available data consist of dialogues constructed by nurses while consulting patients by phone. Since the data are interviews transcribed by nurses during phone conversations, they include a significant volume and variety of noise. When we extract the patient-related information from the noisy data, we have to remove or correct at least two kinds of noise: explicit noise , which includes spelling errors, unfinished sentences, omission of sentence delimiters, and variants of terms, and implicit noise , which includes non-patient information and patient's untrustworthy information. To filter explicit noise, we propose our own biomedical term detection/normalization method: it resolves misspelling, term variations, and arbitrary abbreviation of terms by nurses. In detecting temporal terms, temperature, and other types of named entities (which show patients’ personal information such as age and sex), we propose a bootstrapping-based pattern learning process to detect a variety of arbitrary variations of named entities. To address implicit noise, we propose a dependency path-based filtering method. The result of our denoising is the extraction of normalized patient information, and we visualize the named entities by constructing a graph that shows the relations between named entities. The objective of this knowledge discovery task is to identify associations between biomedical terms and to clearly expose the trends of patients’ symptoms and concern; the experimental results show that we achieve reasonable performance with our noise reduction methods.

Funder

the iCORE division of Alberta Innovates Technology Futures

the Alberta Innovates Centre for Machine Learning

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference43 articles.

1. Extraction of semantic biomedical relations from text using conditional random fields;Bundschus M.;BMC Bioinformatics,2008

2. Coupled semi-supervised learning for information extraction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3