moduli: A Disaggregated Data Management Architecture for Data-Intensive Workflows

Author:

Ceravolo Paolo1,Catarci Tiziana2,Console Marco2,Cudré-Mauroux Philippe3,Groppe Sven4,Hose Katja5,Pokorný Jaroslav6,Romero Oscar7,Wrembel Robert8

Affiliation:

1. Università degli Studi di Milano

2. Sapienza University of Rome

3. Université de Fribourg

4. University of Lübeck

5. TU Wien and Aalborg University

6. Charles University

7. Universitat Politècnica de Catalunya

8. Poznan University of Technology and Artificial Intelligence and Cybersecurity Center

Abstract

As companies store, process, and analyse bigger and bigger volumes of highly heterogeneous data, novel research and technological challenges are emerging. Traditional and rigid data integration and processing techniques become inadequate for a new class of data-intensive applications. There is a need for new architectural, software, and hardware solutions that are capable of providing dynamic data integration, assuring high data quality, and offering safety and security mechanisms, while facilitating online data analysis. In this context, we propose moduli , a novel disaggregated data management reference architecture for data-intensive applications that organizes data processing in various zones. Working on moduli allowed us also to identify open research and technological challenges.

Publisher

Association for Computing Machinery (ACM)

Reference95 articles.

1. Ahmadov, A., Thiele, M., Eberius, J., Lehner, W., and Wrembel, R. 2015. Towards a hybrid imputation approach using web tables. In IEEE/ACM Int. Symposium on Big Data Computing (BDC). IEEE, 21--30.

2. From conceptual design to performance optimization of ETL workflows: current state of research and open problems;Ali S. M. F.;The VLDB Journal,2017

3. INODE: building an end-to-end data exploration system in practice;Amer-Yahia S.;SIGMOD Record,2021

4. Backasch, R., Hempel, G., Werner, S., Groppe, S., and Pionteck, T. 2014. Identifying homogenous reconfigurable regions in heterogeneous fpgas for module relocation. In International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico.

5. The security of machine learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3