An Influence Propagation View of PageRank

Author:

Liu Qi1,Xiang Biao2,Yuan Nicholas Jing3,Chen Enhong1,Xiong Hui4,Zheng Yi1,Yang Yu5

Affiliation:

1. University of Science and Technology of China

2. Ant Financial

3. Microsoft Corporation

4. Rutgers University, NJ

5. Simon Fraser University

Abstract

For a long time, PageRank has been widely used for authority computation and has been adopted as a solid baseline for evaluating social influence related applications. However, when measuring the authority of network nodes, the traditional PageRank method does not take the nodes’ prior knowledge into consideration. Also, the connection between PageRank and social influence modeling methods is not clearly established. To that end, this article provides a focused study on understanding PageRank as well as the relationship between PageRank and social influence analysis. Along this line, we first propose a linear social influence model and reveal that this model generalizes the PageRank-based authority computation by introducing some constraints. Then, we show that the authority computation by PageRank can be enhanced if exploiting more reasonable constraints (e.g., from prior knowledge). Next, to deal with the computational challenge of linear model with general constraints, we provide an upper bound for identifying nodes with top authorities. Moreover, we extend the proposed linear model for better measuring the authority of the given node sets, and we also demonstrate the way to quickly identify the top authoritative node sets. Finally, extensive experimental evaluations on four real-world networks validate the effectiveness of the proposed linear model with respect to different constraint settings. The results show that the methods with more reasonable constraints can lead to better ranking and recommendation performance. Meanwhile, the upper bounds formed by PageRank values could be used to quickly locate the nodes and node sets with the highest authorities.

Funder

National Natural Science Foundation of China

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3