Exploration of Speech and Music Information for Movie Genre Classification

Author:

Bhattacharjee Mrinmoy1ORCID,S. R. Prasanna Mahadeva2ORCID,Guha Prithwijit1ORCID

Affiliation:

1. Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, India

2. Electrical Engineering, Indian Institute of Technology Dharwad, Dharwad, India and Indian Institute of Information Technology Dharwad, Dharwad, India

Abstract

Movie genre prediction from trailers is mostly attempted in a multi-modal manner. However, the characteristics of movie trailer audio indicate that this modality alone might be highly effective in genre prediction. Movie trailer audio predominantly consists of speech and music signals in isolation or overlapping conditions. This work hypothesizes that the genre labels of movie trailers might relate to the composition of their audio component. In this regard, speech-music confidence sequences for the trailer audio are used as a feature. In addition, two other features previously proposed for discriminating speech-music are also adopted in the current task. This work proposes a time and channel Attention Convolutional Neural Network (ACNN) classifier for the genre classification task. The convolutional layers in ACNN learn the spatial relationships in the input features. The time and channel attention layers learn to focus on crucial timesteps and CNN kernel outputs, respectively. The Moviescope dataset is used to perform the experiments, and two audio-based baseline methods are employed to benchmark this work. The proposed feature set with the ACNN classifier improves the genre classification performance over the baselines. Moreover, decent generalization performance is obtained for genre prediction of movies with different cultural influences (EmoGDB).

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3