Affiliation:
1. IBM Research, Rio de Janeiro, RJ, Brazil
2. PUC-Rio, Rio de Janeiro, RJ, Brazil
Abstract
Nowadays, we have access to data of unprecedented volume, high dimensionality, and complexity. To extract novel insights from such complex and dynamic data, we need effective and efficient strategies. One such strategy is to combine data analysis and visualization techniques, which are the essence of visual analytics applications. After the knowledge discovery process, a major challenge is to filter the essential information that has led to a discovery and to communicate the findings to other people, explaining the decisions they may have made based on the data. We propose to record and use the trace left by the exploratory data analysis, in the form of user interaction history, to aid this process. With the trace, users can choose the desired interaction steps and create a narrative, sharing the acquired knowledge with readers. To achieve our goal, we have developed the
BONNIE
(
Building Online Narratives from Noteworthy Interaction Events
) framework. BONNIE comprises a log model to register the interaction events, auxiliary code to help developers instrument their own code, and an environment to view users’ own interaction history and build narratives. This article presents our proposal for communicating discoveries in visual analytics applications, the BONNIE framework, and the studies we conducted to evaluate our solution. After two user studies (the first one focused on history visualization and the second one focused on narrative creation), our solution has showed to be promising, with mostly positive feedback and results from a
Technology Acceptance Model
(
TAM
) questionnaire.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Human-Computer Interaction