Affiliation:
1. Department of Computer Science, North Carolina State University, Box 8206, Raleigh, NC
Abstract
Iterative aggregation/disaggregation methods provide an efficient approach for computing the stationary probability vector of nearly uncoupled (also known as nearly completely decomposable) Markov chains. Three such methods that have appeared in the literature recently are considered and their similarities and differences are outlined. Specifically, it is shown that the method of Takahashi corresponds to a modified block Gauss-Seidel step and aggregation, whereas that of Vantilborgh corresponds to a modified block Jacobi step and aggregation. The third method, that of Koury et al., is equivalent to a standard block Gauss-Seidel step and iteration. For each of these methods, a lemma is established, which shows that the unique fixed point of the iterative scheme is the left eigenvector corresponding to the dominant unit eigenvalue of the stochastic transition probability matrix. In addition, conditions are established for the convergence of the first two of these methods; convergence conditions for the third having already been established by Stewart et al. All three methods are shown to have the same asymptotic rate of convergence.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献