Iterative aggregation/disaggregation techniques for nearly uncoupled markov chains

Author:

Cao Wei-Lu1,Stewart William J.1

Affiliation:

1. Department of Computer Science, North Carolina State University, Box 8206, Raleigh, NC

Abstract

Iterative aggregation/disaggregation methods provide an efficient approach for computing the stationary probability vector of nearly uncoupled (also known as nearly completely decomposable) Markov chains. Three such methods that have appeared in the literature recently are considered and their similarities and differences are outlined. Specifically, it is shown that the method of Takahashi corresponds to a modified block Gauss-Seidel step and aggregation, whereas that of Vantilborgh corresponds to a modified block Jacobi step and aggregation. The third method, that of Koury et al., is equivalent to a standard block Gauss-Seidel step and iteration. For each of these methods, a lemma is established, which shows that the unique fixed point of the iterative scheme is the left eigenvector corresponding to the dominant unit eigenvalue of the stochastic transition probability matrix. In addition, conditions are established for the convergence of the first two of these methods; convergence conditions for the third having already been established by Stewart et al. All three methods are shown to have the same asymptotic rate of convergence.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference6 articles.

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aggregation Methods for Computing Steady States in Statistical Physics;Multiscale Modeling & Simulation;2023-09-08

2. Nearly reducible finite Markov chains: Theory and algorithms;The Journal of Chemical Physics;2021-10-14

3. The Role of Hysteresis in Caching Systems;ACM Transactions on Modeling and Performance Evaluation of Computing Systems;2021-06

4. A successive censoring algorithm for a system of connected LDQBD-processes;Annals of Operations Research;2021-01-01

5. Abstraction-Guided Truncations for Stationary Distributions of Markov Population Models;Quantitative Evaluation of Systems;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3