Streaming Social Event Detection and Evolution Discovery in Heterogeneous Information Networks

Author:

Peng Hao1ORCID,Li Jianxin1,Song Yangqiu2,Yang Renyu3,Ranjan Rajiv4,Yu Philip S.5,He Lifang6

Affiliation:

1. Beihang University, Haidian District, Beijing, China

2. Hong Kong University of Science and Technology, Kowloon, Hong Kong

3. University of Leeds, Leeds, LS2 9JT, UK

4. Newcastle University, NE1 7RU, UK

5. University of Illinois at Chicago, Chicago, IL

6. Lehigh University, Bethlehem, PA

Abstract

Events are happening in real world and real time, which can be planned and organized for occasions, such as social gatherings, festival celebrations, influential meetings, or sports activities. Social media platforms generate a lot of real-time text information regarding public events with different topics. However, mining social events is challenging because events typically exhibit heterogeneous texture and metadata are often ambiguous. In this article, we first design a novel event-based meta-schema to characterize the semantic relatedness of social events and then build an event-based heterogeneous information network (HIN) integrating information from external knowledge base. Second, we propose a novel Pairwise Popularity Graph Convolutional Network, named as PP-GCN, based on weighted meta-path instance similarity and textual semantic representation as inputs, to perform fine-grained social event categorization and learn the optimal weights of meta-paths in different tasks. Third, we propose a streaming social event detection and evolution discovery framework for HINs based on meta-path similarity search, historical information about meta-paths, and heterogeneous DBSCAN clustering method. Comprehensive experiments on real-world streaming social text data are conducted to compare various social event detection and evolution discovery algorithms. Experimental results demonstrate that our proposed framework outperforms other alternative social event detection and evolution discovery techniques.

Funder

National Natural Science Foundation of China

Hong Kong RGC

State Key Laboratory of Software Development Environment

NSF

UK EPSRC

NSF ONR

Key Research and Development Project of Hebei Province

NSF of Guangdong Province

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3