Monitor optimization via stutter-equivalent loop transformation

Author:

Purandare Rahul1,Dwyer Matthew B.1,Elbaum Sebastian1

Affiliation:

1. University of Nebraska - Lincoln, Lincoln, NE, USA

Abstract

There has been significant interest in equipping programs with runtime checks aimed at detecting errors to improve fault detection during testing and in the field. Recent work in this area has studied methods for efficiently monitoring a program execution's conformance to path property specifications, e.g., such as those captured by a finite state automaton. These techniques show great promise, but their broad applicability is hampered by the fact that for certain combinations of programs and properties the overhead of checking can slow the program down by up to 3500%. We have observed that, in many cases, the overhead of runtime monitoring is due to the behavior of program loops. We present a general framework for optimizing the monitoring of loops relative to a property. This framework allows monitors to process a loop in constant-time rather than time that is proportional to the number of loop iterations. We present the results of an empirical study that demonstrates that significant overhead reduction that can be achieved by applying the framework to monitor properties of several large Java programs.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RVprio: A tool for prioritizing runtime verification violations;Software Testing, Verification and Reliability;2022-03-07

2. Optimal Finite-State Monitoring of Partial Traces;Runtime Verification;2022

3. What can we monitor over unreliable channels?;International Journal on Software Tools for Technology Transfer;2021-06-30

4. Demystifying the Challenges of Formally Specifying API Properties for Runtime Verification;2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST);2021-04

5. A Unifying Framework for Dynamic Monitoring and a Taxonomy of Optimizations;Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3