The expressibility of functions on the boolean domain, with applications to counting CSPs

Author:

Bulatov Andrei A.1,Dyer Martin2,Goldberg Leslie Ann3,Jerrum Mark4,Mcquillan Colin5

Affiliation:

1. Simon Fraser University, Canada

2. University of Leeds, UK

3. University of Oxford, UK

4. Queen Mary, University of London, UK

5. University of Liverpool, UK

Abstract

An important tool in the study of the complexity of Constraint Satisfaction Problems (CSPs) is the notion of a relational clone, which is the set of all relations expressible using primitive positive formulas over a particular set of base relations. Post's lattice gives a complete classification of all Boolean relational clones, and this has been used to classify the computational difficulty of CSPs. Motivated by a desire to understand the computational complexity of (weighted) counting CSPs, we develop an analogous notion of functional clones and study the landscape of these clones. One of these clones is the collection of log-supermodular (lsm) functions, which turns out to play a significant role in classifying counting CSPs. In the conservative case (where all nonnegative unary functions are available), we show that there are no functional clones lying strictly between the clone of lsm functions and the total clone (containing all functions). Thus, any counting CSP that contains a single nontrivial non-lsm function is computationally as hard to approximate as any problem in #P. Furthermore, we show that any nontrivial functional clone (in a sense that will be made precise) contains the binary function “implies”. As a consequence, in the conservative case, all nontrivial counting CSPs are as hard to approximate as #BIS, the problem of counting independent sets in a bipartite graph. Given the complexity-theoretic results, it is natural to ask whether the “implies” clone is equivalent to the clone of lsm functions. We use the Möbius transform and the Fourier transform to show that these clones coincide precisely up to arity 3. It is an intriguing open question whether the lsm clone is finitely generated. Finally, we investigate functional clones in which only restricted classes of unary functions are available.

Funder

Isaac Newton Institute for Mathematical Sciences

Natural Sciences and Engineering Research Council of Canada

Engineering and Physical Sciences Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3