Radial Basis Function Attention for Named Entity Recognition

Author:

Chen Jiusheng1ORCID,Xu Xingkai1ORCID,Zhang Xiaoyu1ORCID

Affiliation:

1. Civil Aviation University of China, Tianjin, China

Abstract

Attention mechanism is an increasingly important approach in the field of natural language processing (NLP). In the attention-based named entity recognition (NER) model, most attention mechanisms can calculate attention coefficient to express the importance of sentence semantic information but cannot adjust the position distribution of contextual feature vectors in the semantic space. To address this issue, a radial basis function attention (RBF-attention) layer is proposed to adaptively regulate the position distribution of sequence contextual feature vectors, which can minimize the relative distance of within-category named entities and maximize the relative distance of between-category named entities in the semantic space. The experimental results on CoNLL2003 English and MSRA Chinese NER datasets indicate that the proposed model performs better than other baseline approaches without relying on any external feature engineering.

Funder

Scientific Research Project of Tianjin Municipal Education Commission

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference42 articles.

1. A survey of named entity recognition and classification

2. E. Bastianelli, G. Castellucci, D. Croce, and R. Basili. 2013. Textual inference and meaning representation in human robot interaction. In Joint Symposium on Semantic Processing Textual Inference and Structures in Corpora. (2013), 65–69.

3. Quantifying the Significance of Cybersecurity Text through Semantic Similarity and Named Entity Recognition

4. Information Extraction over Structured Data: Question Answering with Freebase

5. O. Kuru, O. A. Can, and D. Yuret, 2016. CharNER: Character-level named entity recognition. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers (COLING’16). 911–921.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3