Level 3 basic linear algebra subprograms for sparse matrices

Author:

Duff Iain S.1,Marrone Michele2,Radicati Giuseppe2,Vittoli Carlo2

Affiliation:

1. Rutherford Appleton Lab., Oxon, UK

2. IBM, Cagliari, Italy

Abstract

This article proposes a set of Level 3 Basic Linear Algebra Subprograms and associated kernels for sparse matrices. A major goal is to design and develop a common framework to enable efficient, and portable, implementations of iterative algorithms for sparse matrices on high-performance computers. We have designed the routines to shield the developer of mathematical software from most of the complexities of the various data structures used for sparse matrices. We have kept the interface and suite of codes as simple as possible while at the same time including sufficient functionality to cover most of the requirements of iterative solvers and sufficient flexibility to cover most sparse matrix data structures. An important aspect of our framework is that it can be easily extended to incorporate new kernels if the need arises. We discuss the design, implementation, and use of subprograms for the multiplication of a fully matrix by a sparse one and for the solution of sparse triangular systems with one or more (full) right-hand sides. We include a routine for checking the input data, generating a new sparse data structure from the input, and scaling a sparse matrix. The new data structure for the transformation can be specified by the user or can be chosen automatically by vendors to be efficient on their machines. We also include a routine for permuting the columns of a sparse matrix and one for permuting the rows of a full matrix.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference16 articles.

1. AEA TECHNOLOGY. 1996. Harwell Subroutine Library: A catalogue of subroutines (release 12). AEA Technology Didcot Oxon United Kingdom. AEA TECHNOLOGY. 1996. Harwell Subroutine Library: A catalogue of subroutines (release 12). AEA Technology Didcot Oxon United Kingdom.

2. A high performance algorithm using pre-processing for the sparse matrix-vector multiplication

3. ANDERSON E. BAI Z. BISCHOF C. DEMMEL J. DONGARRA J. Du CROZ J. GREENBAUM A. HAMMARLING S. MCKENNEY A. OSTROUCHOV S. AND SORENSEN D. 1992. LAPACK User's Guide. Society for Industrial and Applied Mathematics Philadelphia PA. ANDERSON E. BAI Z. BISCHOF C. DEMMEL J. DONGARRA J. Du CROZ J. GREENBAUM A. HAMMARLING S. MCKENNEY A. OSTROUCHOV S. AND SORENSEN D. 1992. LAPACK User's Guide. Society for Industrial and Applied Mathematics Philadelphia PA.

4. ASHBY S. F. AND SEAGER M.K. 1990. A proposed standard for iterative solvers. Tech. Rep. 102860 Lawrence Livermore National Laboratory Livermore CA. ASHBY S. F. AND SEAGER M.K. 1990. A proposed standard for iterative solvers. Tech. Rep. 102860 Lawrence Livermore National Laboratory Livermore CA.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Software for Numerical Linear Algebra;Springer Texts in Statistics;2024

2. HASpGEMM: Heterogeneity-Aware Sparse General Matrix-Matrix Multiplication on Modern Asymmetric Multicore Processors;Proceedings of the 52nd International Conference on Parallel Processing;2023-08-07

3. VCSR: An Efficient GPU Memory-Aware Sparse Format;IEEE Transactions on Parallel and Distributed Systems;2022-12-01

4. TileSpGEMM;Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming;2022-03-28

5. Compress‐and‐restart block Krylov subspace methods for Sylvester matrix equations;Numerical Linear Algebra with Applications;2020-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3