User-changeable visibility

Author:

Ducasse Stéphane1,Wuyts Roel2,Bergel Alexandre3,Nierstrasz Oscar4

Affiliation:

1. LISTIC Université de Savoie & INRIA Futurs, Lille, France

2. IMEC and Université Libre de Bruxelles, Brussels, Belgium

3. Hasso-Plattner-Institut & LERO: Trinity College Dublin, Potsdam, Germany

4. University of Bern, Bern, Switzerland

Abstract

A trait is a unit of behaviour that can be composed with other traits and used by classes. Traits offer an alternative to multiple inheritance. Conflict resolution of traits, while flexible, does not completely handle accidental method name conflicts: if a trait with method m is composed with another trait defining a different method m then resolving the conflict may prove delicate or infeasible in cases where both versions of m are still needed. In this paper we present freezeable traits , which provide an expressive composition mechanism to support unanticipated method composition conflicts. Our solution introduces private trait methods and lets the class composer change method visibility at composition time (from public to private and vice versa). Moreover two class composers may use different composition policies for the same trait, something which is not possible in mainstream languages. This approach respects the two main design principles of traits: the class composer is empowered and traits can be flattened away. We present an implementation of freezable traits in Smalltalk. As a side-effect of this implementation we introduced private (early-bound and invisible) methods to Smalltalk by distinguishing object-sends from self-sends. Our implementation uses compile-time bytecode manipulation and, as such, introduces no run-time penalties.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Subobject-Oriented Programming;Formal Methods for Components and Objects;2013

2. Magda: A New Language for Modularity;ECOOP 2012 – Object-Oriented Programming;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3