Trichromatic approximation for computer graphics illumination models

Author:

Borges Carlos F.1

Affiliation:

1. Computer Graphics Research Laboratory, Division of Computer Science, University of California, Davis, California

Abstract

The complexity of computer graphics illumination models and the associated need to find ways of reducing evaluation time has led to the use of two methods for simplifying the spectral data needed for an exact solution. The first method, where spectral data is sampled at a number of discrete points, has been extensively investigated and bounds for the error are known. Unfortunately, the second method, where spectral data is replaced with tristimulus values (such as RGB values), is very little understood even though it is widely used. In this paper we examine the error incurred by the use of this method by investigating the problem of approximating the tristimulus coordinates of light reflected from a surface from those of the source and the surface. A variation on a well known and widely used approximation is presented. This variation used the XYZ primaries which have unique properties that yield straightforward analytic bounds for the approximation error. This analysis is important because it gives a sound mathematical footing to the widely used method of trichromatic approximation. The error bounds will give some insights into the factors that affect accuracy and will indicate why this method often works quite well in practice.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metameric: Spectral Uplifting via Controllable Color Constraints;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Proceedings;2023-07-23

2. A multi‐pass method for accelerated spectral sampling;Computer Graphics Forum;2021-10

3. References;Physically Based Rendering;2017

4. A Primer for Colour Computer Vision;Registration and Recognition in Images and Videos;2014

5. Corrected-Moment Illuminant Estimation;2013 IEEE International Conference on Computer Vision;2013-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3