Polyhedral Specification and Code Generation of Sparse Tensor Contraction with Co-iteration

Author:

Zhao Tuowen1ORCID,Popoola Tobi2ORCID,Hall Mary1ORCID,Olschanowsky Catherine2ORCID,Strout Michelle3ORCID

Affiliation:

1. University of Utah, Salt Lake City, UT, USA

2. Boise State University, Boise, ID, USA

3. University of Arizona, Tucson, AZ, USA

Abstract

This article presents a code generator for sparse tensor contraction computations. It leverages a mathematical representation of loop nest computations in the sparse polyhedral framework (SPF), which extends the polyhedral model to support non-affine computations, such as those that arise in sparse tensors. SPF is extended to perform layout specification, optimization, and code generation of sparse tensor code: (1) We develop a polyhedral layout specification that decouples iteration spaces for layout and computation; and (2) we develop efficient co-iteration of sparse tensors by combining polyhedra scanning over the layout of one sparse tensor with the synthesis of code to find corresponding elements in other tensors through an SMT solver. We compare the generated code with that produced by a state-of-the-art tensor compiler, TACO. We achieve on average 1.63× faster parallel performance than TACO on sparse-sparse co-iteration and describe how to improve that to 2.72× average speedup by switching the find algorithms. We also demonstrate that decoupling iteration spaces of layout and computation enables additional layout and computation combinations to be supported.

Funder

Exascale Computing Project

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference83 articles.

1. Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16). 265–283.

2. NVIDIA Corporation & affiliates. 2021. Parallel Thread Execution ISA Version 7.5. Retrieved from https://docs.nvidia.com/cuda/parallel-thread-execution/index.html.

3. Syntax-guided synthesis

4. Scanning polyhedra with DO loops

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CoNST: Code Generator for Sparse Tensor Networks;ACM Transactions on Architecture and Code Optimization;2024-08-17

2. LO-SpMM: Low-cost Search for High-performance SpMM Kernels on GPUs;ACM Transactions on Architecture and Code Optimization;2024-07-29

3. Compilation of Modular and General Sparse Workspaces;Proceedings of the ACM on Programming Languages;2024-06-20

4. Minimum Cost Loop Nests for Contraction of a Sparse Tensor with a Tensor Network;Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures;2024-06-17

5. POSTER: Optimizing Sparse Tensor Contraction with Revisiting Hash Table Design;Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming;2024-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3