Automatic Storage Optimization for Arrays

Author:

Bhaskaracharya Somashekaracharya G.1,Bondhugula Uday1,Cohen Albert2

Affiliation:

1. Indian Institute of Science, Bangalore, India

2. INRIA, Paris, France

Abstract

Efficient memory allocation is crucial for data-intensive applications, as a smaller memory footprint ensures better cache performance and allows one to run a larger problem size given a fixed amount of main memory. In this article, we describe a new automatic storage optimization technique to minimize the dimensionality and storage requirements of arrays used in sequences of loop nests with a predetermined schedule. We formulate the problem of intra-array storage optimization as one of finding the right storage partitioning hyperplanes: each storage partition corresponds to a single storage location. Our heuristic is driven by a dual-objective function that minimizes both the dimensionality of the mapping and the extents along those dimensions. The technique is dimension optimal for most codes encountered in practice. The storage requirements of the mappings obtained also are asymptotically better than those obtained by any existing schedule-dependent technique. Storage reduction factors and other results that we report from an implementation of our technique demonstrate its effectiveness on several real-world examples drawn from the domains of image processing, stencil computations, high-performance computing, and the class of tiled codes in general.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference28 articles.

1. Scheduling Tasks to Maximize Usage of Aggregate Variables in Place

2. Christophe Alias. 2007. Bee+Cl@k. Available at http://compsys-tools.ens-lyon.fr/. Christophe Alias. 2007. Bee+Cl@k. Available at http://compsys-tools.ens-lyon.fr/.

3. Bee+Cl@k

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lightweight Array Contraction by Trace-Based Polyhedral Analysis;Lecture Notes in Computer Science;2022

2. Polyhedral Compilation for Multi-dimensional Stream Processing;ACM Transactions on Architecture and Code Optimization;2019-09-30

3. DeLICM: scalar dependence removal at zero memory cost;Proceedings of the 2018 International Symposium on Code Generation and Optimization - CGO 2018;2018

4. SMO: an integrated approach to intra-array and inter-array storage optimization;Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages;2016-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3