Automatic data allocation and buffer management for multi-GPU machines

Author:

Ramashekar Thejas1,Bondhugula Uday1

Affiliation:

1. Indian Institute of Science, Karnataka, India

Abstract

Multi-GPU machines are being increasingly used in high-performance computing. Each GPU in such a machine has its own memory and does not share the address space either with the host CPU or other GPUs. Hence, applications utilizing multiple GPUs have to manually allocate and manage data on each GPU. Existing works that propose to automate data allocations for GPUs have limitations and inefficiencies in terms of allocation sizes, exploiting reuse, transfer costs, and scalability. We propose a scalable and fully automatic data allocation and buffer management scheme for affine loop nests on multi-GPU machines. We call it the Bounding-Box-based Memory Manager (BBMM). BBMM can perform at runtime , during standard set operations like union, intersection, and difference, finding subset and superset relations on hyperrectangular regions of array data (bounding boxes). It uses these operations along with some compiler assistance to identify, allocate, and manage data required by applications in terms of disjoint bounding boxes. This allows it to (1) allocate exactly or nearly as much data as is required by computations running on each GPU, (2) efficiently track buffer allocations and hence maximize data reuse across tiles and minimize data transfer overhead, and (3) and as a result, maximize utilization of the combined memory on multi-GPU machines. BBMM can work with any choice of parallelizing transformations, computation placement, and scheduling schemes, whether static or dynamic. Experiments run on a four-GPU machine with various scientific programs showed that BBMM reduces data allocations on each GPU by up to 75% compared to current allocation schemes, yields performance of at least 88% of manually written code, and allows excellent weak scaling.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview;Journal of Computer Science and Technology;2024-05

2. Efficient Job Offloading in Heterogeneous Systems Through Hardware-Assisted Packet-Based Dispatching and User-Level Runtime Infrastructure;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2020-05

3. OmpMemOpt: Optimized Memory Movement for Heterogeneous Computing;Euro-Par 2020: Parallel Processing;2020

4. HiWayLib;Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems;2019-04-04

5. CODA;ACM Transactions on Architecture and Code Optimization;2018-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3