Meta optimization

Author:

Stephenson Mark1,Amarasinghe Saman1,Martin Martin1,O'Reilly Una-May1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

Abstract

Compiler writers have crafted many heuristics over the years to approximately solve NP-hard problems efficiently. Finding a heuristic that performs well on a broad range of applications is a tedious and difficult process. This paper introduces Meta Optimization, a methodology for automatically fine-tuning compiler heuristics. Meta Optimization uses machine-learning techniques to automatically search the space of compiler heuristics. Our techniques reduce compiler design complexity by relieving compiler writers of the tedium of heuristic tuning. Our machine-learning system uses an evolutionary algorithm to automatically find effective compiler heuristics. We present promising experimental results. In one mode of operation Meta Optimization creates application-specific heuristics which often result in impressive speedups. For hyperblock formation, one optimization we present in this paper, we obtain an average speedup of 23% (up to 73%) for the applications in our suite. Furthermore, by evolving a compiler's heuristic over several benchmarks, we can create effective, general-purpose heuristics. The best general-purpose heuristic our system found for hyperblock formation improved performance by an average of 25% on our training set, and 9% on a completely unrelated test set. We demonstrate the efficacy of our techniques on three different optimizations in this paper: hyperblock formation, register allocation, and data prefetching.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference23 articles.

1. W. Banzhaf P. Nordin R. Keller and F. Francone. Genetic Programming : An Introduction : On the Automatic Evolution of Computer Programs and Its Applications Morgan Kaufmann 1998. W. Banzhaf P. Nordin R. Keller and F. Francone. Genetic Programming : An Introduction : On the Automatic Evolution of Computer Programs and Its Applications Morgan Kaufmann 1998.

2. Spill code minimization techniques for optimizing compliers

3. D. Bourgin. Losslessy compression schemes http://hpux.u-aizu.ac.jp/hppd/hpux-/Languages/codecs-1.0/. D. Bourgin. Losslessy compression schemes http://hpux.u-aizu.ac.jp/hppd/hpux-/Languages/codecs-1.0/.

4. Evidence-based static branch prediction using machine learning

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metaheuristics and Machine Learning Convergence;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

2. Revealing Compiler Heuristics Through Automated Discovery and Optimization;2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO);2024-03-02

3. Guided Equality Saturation;Proceedings of the ACM on Programming Languages;2024-01-05

4. Facile: Fast, Accurate, and Interpretable Basic-Block Throughput Prediction;2023 IEEE International Symposium on Workload Characterization (IISWC);2023-10-01

5. Uncovering the performance bottleneck of modern HPC processor with static code analyzer: a case study on Kunpeng 920;CCF Transactions on High Performance Computing;2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3