Automatically proving the correctness of compiler optimizations

Author:

Lerner Sorin1,Millstein Todd1,Chambers Craig1

Affiliation:

1. University of Washington

Abstract

We describe a technique for automatically proving compiler optimizations sound , meaning that their transformations are always semantics-preserving. We first present a domain-specific language, called Cobalt, for implementing optimizations as guarded rewrite rules. Cobalt optimizations operate over a C-like intermediate representation including unstructured control flow, pointers to local variables and dynamically allocated memory, and recursive procedures. Then we describe a technique for automatically proving the soundness of Cobalt optimizations. Our technique requires an automatic theorem prover to discharge a small set of simple, optimization-specific proof obligations for each optimization. We have written a variety of forward and backward intraprocedural dataflow optimizations in Cobalt, including constant propagation and folding, branch folding, full and partial redundancy elimination, full and partial dead assignment elimination, and simple forms of points-to analysis. We implemented our soundness-checking strategy using the Simplify automatic theorem prover, and we have used this implementation to automatically prove our optimizations correct. Our checker found many subtle bugs during the course of developing our optimizations. We also implemented an execution engine for Cobalt optimizations as part of the Whirlwind compiler infrastructure.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LLM4VV: Developing LLM-driven testsuite for compiler validation;Future Generation Computer Systems;2024-11

2. Lightweight, Modular Verification for WebAssembly-to-Native Instruction Selection;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 1;2024-04-17

3. Pattern-Based Peephole Optimizations with Java JIT Tests;Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis;2023-07-12

4. Synthesizing Quantum-Circuit Optimizers;Proceedings of the ACM on Programming Languages;2023-06-06

5. Alive2: bounded translation validation for LLVM;Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2021-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3