Web Content Classification Using Distributions of Subjective Quality Evaluations

Author:

Rafalak Maria1,Deja Dominik1,Wierzbicki Adam2,Nielek Radosław1,Kąkol Michał1

Affiliation:

1. Polish-Japanese Academy of Information Technology

2. Wrocław University of Technology

Abstract

Machine learning algorithms and recommender systems trained on human ratings are widely in use today. However, human ratings may be associated with a high level of uncertainty and are subjective, influenced by demographic or psychological factors. We propose a new approach to the design of object classes from human ratings: the use of entire distributions to construct classes. By avoiding aggregation for class definition, our approach loses no information and can deal with highly volatile or conflicting ratings. The approach is based the concept of the Earth Mover's Distance (EMD), a measure of distance for distributions. We evaluate the proposed approach based on four datasets obtained from diverse Web content or movie quality evaluation services or experiments. We show that clusters discovered in these datasets using the EMD measure are characterized by a consistent and simple interpretation. Quality classes defined using entire rating distributions can be fitted to clusters of distributions in the four datasets using two parameters, resulting in a good overall fit. We also consider the impact of the composition of small samples on the distributions that are the basis of our classification approach. We show that using distributions based on small samples of 10 evaluations is still robust to several demographic and psychological variables. This observation suggests that the proposed approach can be used in practice for quality evaluation, even for highly uncertain and subjective ratings.

Funder

European Union's Seventh Framework Programme for research, technological development and demonstration

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3