The Square Root Rule for Adaptive Importance Sampling

Author:

Owen Art B.1,Zhou Yi

Affiliation:

1. Stanford University, Stanford, CA, USA

Abstract

In adaptive importance sampling and other contexts, we have K > 1 unbiased and uncorrelated estimates μ ^ k of a common quantity μ. The optimal unbiased linear combination weights them inversely to their variances, but those weights are unknown and hard to estimate. A simple deterministic square root rule based on a working model that Var(μ ^ k ) ∝ k −1/2 gives an unbiased estimate of μ that is nearly optimal under a wide range of alternative variance patterns. We show that if Var(μ ^ k )∝ k y for an unknown rate parameter y ∈[0,1], then the square root rule yields the optimal variance rate with a constant that is too large by at most 9/8 for any 0 ⩽ y ⩽ 1 and any number K of estimates. Numerical work shows that rule is similarly robust to some other patterns with mildly decreasing variance as k increases.

Funder

U.S. National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3