Defunctionalized interpreters for programming languages

Author:

Danvy Olivier1

Affiliation:

1. University of Aarhus, Aarhus, Denmark

Abstract

This document illustrates how functional implementations of formal semantics (structural operational semantics, reduction semantics, small-step and big-step abstract machines, natural semantics, and denotational semantics) can be transformed into each other. These transformations were foreshadowed by Reynolds in "Definitional Interpreters for Higher-Order Programming Languages" for functional implementations of denotational semantics, natural semantics, and big-step abstract machines using closure conversion, CPS transformation, and defunctionalization. Over the last few years, the author and his students have further observed that functional implementations of small-step and of big-step abstract machines are related using fusion by fixed-point promotion and that functional implementations of reduction semantics and of small-step abstract machines are related using refocusing and transition compression. It furthermore appears that functional implementations of structural operational semantics and of reduction semantics are related as well, also using CPS transformation and defunctionalization. This further relation provides an element of answer to Felleisen's conjecture that any structural operational semantics can be expressed as a reduction semantics: for deterministic languages, a reduction semantics is a structural operational semantics in continuation style, where the reduction context is a defunctionalized continuation. As the defunctionalized counterpart of the continuation of a one-step reduction function, a reduction context represents the rest of the reduction, just as an evaluation context represents the rest of the evaluation since it is the defunctionalized counterpart of the continuation of an evaluation function.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LURK: Lambda, the Ultimate Recursive Knowledge (Experience Report);Proceedings of the ACM on Programming Languages;2023-08-30

2. Programming language semantics: It’s easy as 1,2,3;Journal of Functional Programming;2023

3. A Calculus for Language Transformations;SOFSEM 2020: Theory and Practice of Computer Science;2020

4. System Description: Lang-n-Change - A Tool for Transforming Languages;Functional and Logic Programming;2020

5. A Semantic Approach to Data Reduction for Weighted Graphs and Complex Queries;International Journal of Semantic Computing;2018-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3