Weak ε-nets and interval chains

Author:

Alon Noga1,Kaplan Haim1,Nivasch Gabriel1,Sharir Micha1,Smorodinsky Shakhar2

Affiliation:

1. Tel-Aviv University, Tel-Aviv, Israel

2. Ben-Gurion University, Be'er Sheva, Israel

Abstract

We construct weak ε-nets of almost linear size for certain types of point sets. Specifically, for planar point sets in convex position we construct weak 1/r-nets of size O(rα(r)), where α(r) denotes the inverse Ackermann function. For point sets along the moment curve in ℝ d we construct weak 1/r-nets of size r · 2 poly(α(r)) , where the degree of the polynomial in the exponent depends (quadratically) on d. Our constructions result from a reduction to a new problem, which we call stabbing interval chains with j-tuples. Given the range of integers N = [1, n], an interval chain of length k is a sequence of k consecutive, disjoint, nonempty intervals contained in N. A j-tuple $\bar{P}$ = (p1,…,pj) is said to stab an interval chain C = I 1 …I k if each p i falls on a different interval of C. The problem is to construct a small-size family Z of j-tuples that stabs all k-interval chains in N. Let z (j) k (n) denote the minimum size of such a family Z. We derive almost-tight upper and lower bounds for z (j) k (n) for every fixed j; our bounds involve functions α m (n) of the inverse Ackermann hierarchy. Specifically, we show that for j = 3 we have z (3) k (n) = Θ(nα $\lfloor$k/2$\rfloor$ (n)) for all k ≥ 6. For each j≥4, we construct a pair of functions Pʹ j (m), Qʹ j (m), almost equal asymptotically, such that z (j) j(m)(n) = O(nα m (n)) and z (j) j(m)(n) = Ω(nα m (n)).

Funder

Division of Computing and Communication Foundations

Israel Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stronger bounds for weak epsilon-nets in higher dimensions;Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing;2021-06-15

2. On Weak $$\epsilon $$-Nets and the Radon Number;Discrete & Computational Geometry;2020-07-13

3. Forbidden formations in multidimensional 0-1 matrices;European Journal of Combinatorics;2019-05

4. An Improved Bound for Weak Epsilon-Nets in the Plane;2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS);2018-10

5. Sharp Bounds on Davenport-Schinzel Sequences of Every Order;Journal of the ACM;2015-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3