Privacy-preserving Time-series Medical Images Analysis Using a Hybrid Deep Learning Framework

Author:

Yue Zijie1,Ding Shuai1ORCID,Zhao Lei2,Zhang Youtao2,Cao Zehong3,Tanveer M.4ORCID,Jolfaei Alireza5,Zheng Xi5

Affiliation:

1. Hefei University of Technology, Hefei, China

2. University of Pittsburgh, Pittsburgh, USA

3. University of Tasmania, Hobart, Australia

4. Indian Institute of Technology Indore, New Delhi, India

5. Macquarie University, Sydney, Australia

Abstract

Time-series medical images are an important type of medical data that contain rich temporal and spatial information. As a state-of-the-art, computer-aided diagnosis (CAD) algorithms are usually used on these image sequences to improve analysis accuracy. However, such CAD algorithms are often required to upload medical images to honest-but-curious servers, which introduces severe privacy concerns. To preserve privacy, the existing CAD algorithms support analysis on each encrypted image but not on the whole encrypted image sequences, which leads to the loss of important temporal information among frames. To meet this challenge, a convolutional-LSTM network, named HE-CLSTM, is proposed for analyzing time-series medical images encrypted by a fully homomorphic encryption mechanism. Specifically, several convolutional blocks are constructed to extract discriminative spatial features, and LSTM-based sequence analysis layers (HE-LSTM) are leveraged to encode temporal information from the encrypted image sequences. Moreover, a weighted unit and a sequence voting layer are designed to incorporate both spatial and temporal features with different weights to improve performance while reducing the missed diagnosis rate. The experimental results on two challenging benchmarks (a Cervigram dataset and the BreaKHis public dataset) provide strong evidence that our framework can encode visual representations and sequential dynamics from encrypted medical image sequences; our method achieved AUCs above 0.94 both on the Cervigram and BreaKHis datasets, constituting a significant margin of statistical improvement compared with several competing methods.

Funder

National Natural Science Foundation of China

Anhui Provincial Science and Technology Major Project

Fundamental Research Funds for the Central Universities

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference50 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3