End-to-end Procedural Material Capture with Proxy-Free Mixed-Integer Optimization

Author:

Li Beichen1ORCID,Shi Liang1ORCID,Matusik Wojciech1ORCID

Affiliation:

1. Massachusetts Institute of Technology (MIT), Cambridge, United States of America

Abstract

Node-graph-based procedural materials are vital to 3D content creation within the computer graphics industry. Leveraging the expressive representation of procedural materials, artists can effortlessly generate diverse appearances by altering the graph structure or node parameters. However, manually reproducing a specific appearance is a challenging task that demands extensive domain knowledge and labor. Previous research has sought to automate this process by converting artist-created material graphs into differentiable programs and optimizing node parameters against a photographed material appearance using gradient descent. These methods involve implementing differentiable filter nodes [Shi et al. 2020] and training differentiable neural proxies for generator nodes to optimize continuous and discrete node parameters [Hu et al. 2022a] jointly. Nevertheless, Neural Proxies exhibits critical limitations, such as long training times, inaccuracies, fixed resolutions, and confined parameter ranges, which hinder their scalability towards the broad spectrum of production-grade material graphs. These constraints fundamentally stem from the absence of faithful and efficient implementations of generic noise and pattern generator nodes, both differentiable and non-differentiable. Such deficiency prevents the direct optimization of continuous and discrete generator node parameters without relying on surrogate models. We present Diffmat v2 , an improved differentiable procedural material library, along with a fully-automated, end-to-end procedural material capture framework that combines gradient-based optimization and gradient-free parameter search to match existing production-grade procedural materials against user-taken flash photos. Diffmat v2 expands the range of differentiable material graph nodes in Diffmat [Shi et al. 2020] by adding generic noise/pattern generator nodes and user-customizable per-pixel filter nodes. This allows for the complete translation and optimization of procedural materials across various categories without the need for external proprietary tools or pre-cached noise patterns. Consequently, our method can capture a considerably broader array of materials, encompassing those with highly regular or stochastic geometries. We demonstrate that our end-to-end approach yields a closer match to the target than MATch [Shi et al. 2020] and Neural Proxies [Hu et al. 2022a] when starting from initially unmatched continuous and discrete parameters.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference87 articles.

1. Substance 3D Designer Adobe. 2022a. Adobe. https://substance3d.adobe.com/documentation/sddoc/substance-3d-designer-102400008.html. Substance 3D Designer Adobe. 2022a. Adobe. https://substance3d.adobe.com/documentation/sddoc/substance-3d-designer-102400008.html.

2. Substance 3D Designer Function Nodes Overview Adobe. 2022b. Adobe. https://substance3d.adobe.com/documentation/sddoc/function-nodes-overview-102400052.html. Substance 3D Designer Function Nodes Overview Adobe. 2022b. Adobe. https://substance3d.adobe.com/documentation/sddoc/function-nodes-overview-102400052.html.

3. Practical SVBRDF capture in the frequency domain

4. Two-shot SVBRDF capture for stationary materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PSDR-Room: Single Photo to Scene using Differentiable Rendering;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3