Simplifying Transactional Memory Support in C++

Author:

Zardoshti Pantea1ORCID,Zhou Tingzhe1,Balaji Pavithra1,Scott Michael L.2,Spear Michael1

Affiliation:

1. Lehigh University, Bethlehem, PA

2. University of Rochester, Rochester, NY

Abstract

C++ has supported a provisional version of Transactional Memory (TM) since 2015, via a technical specification. However, TM has not seen widespread adoption, and compiler vendors have been slow to implement the technical specification. We conjecture that the proposed TM support is too difficult for programmers to use, too complex for compiler designers to implement and verify, and not industry-proven enough to justify final standardization in its current form. To address these problems, we present a different design for supporting TM in C++. By forbidding explicit self-abort, and by introducing an executor-based mechanism for running transactions, our approach makes it easier for developers to get code up and running with TM. Our proposal should also be appealing to compiler developers, as it allows a spectrum of levels of support for TM, with varying performance, and varying reliance on hardware TM support in order to provide scalability. <?tight?>While our design does not enable some of the optimizations admitted by the current technical specification, we show that it enables the implementation of robust support for TM in a small, orthogonal compiler extension. Our implementation is able to handle a wide range of transactional programs, delivering low instrumentation overhead and scalability and performance on par with the current state of the art. Based on this experience, we believe our approach to be a viable means of reinvigorating the standardization of TM in C++.

Funder

NSF

Google Faculty Research award

Intel and NSF joint research center for Computer Assisted Programming for Heterogeneous Architectures

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Separating Mechanism from Policy in STM;2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT);2023-10-21

2. Implementing and verifying release-acquire transactional memory in C11;Proceedings of the ACM on Programming Languages;2022-10-31

3. Using Barrier Elision to Improve Transactional Code Generation;ACM Transactions on Architecture and Code Optimization;2022-07-06

4. An extension for Transactional Memory in OpenMP;25th Brazilian Symposium on Programming Languages;2021-09-27

5. Semantic Conflict Detection for Transactional Data Structure Libraries;Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures;2021-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3