SmartTransfer

Author:

Du Bowen1,Cui Yifeng1,Fu Yanjie2,Zhong Runxing1,Xiong Hui3

Affiliation:

1. Beihang University, Haidian District, Beijing, China

2. University of Missouri-Rolla, Rolla, MO, USA

3. Rutgers University, Newark, NJ, USA

Abstract

In urban transportation systems, transfer stations refer to hubs connecting a variety of bus and subway lines and, thus, are the most important nodes in transportation networks. The pervasive availability of large-scale travel traces of passengers, collected from automated fare collection (AFC) systems, has provided unprecedented opportunities for understanding citywide transfer patterns, which can benefit smart transportation, such as smart route recommendation to avoid crowded lines, and dynamic bus scheduling to enhance transportation efficiency. To this end, in this article, we provide a systematic study of the measurement, patterns, and modeling of spatiotemporal dynamics of passenger transfers. Along this line, we develop a data-driven analytical system for modeling the transfer volumes of each transfer station. More specifically, we first identify and quantify the discriminative patterns of spatiotemporal dynamics of passenger transfers by utilizing heterogeneous sources of transfer related data for each station. Also, we develop a multi-task spatiotemporal learning model for predicting the transfer volumes of a specific station at a specific time period. Moreover, we further leverage the predictive model of passenger transfers to provide crowdedness-aware route recommendations. Finally, we conduct the extensive evaluations with a variety of real-world data. Experimental results demonstrate the effectiveness of our proposed modeling method and its applications for smart transportation.

Funder

University of Missouri Research Board

Beijing Municipal Science and Technology Project

Natural Science Foundation of China

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on personalized itinerary recommendation: From optimisation to deep learning;Applied Soft Computing;2024-02

2. Passenger Flow Path Prediction Based on Urban Rail Transit AFC Data: An Example of Chengdu, China;Journal of Advanced Transportation;2023-11-10

3. Automated Urban Planning for Reimagining City Configuration via Adversarial Learning: Quantification, Generation, and Evaluation;ACM Transactions on Spatial Algorithms and Systems;2023-01-17

4. Transfer Route Recommendation for Metro Systems Based on Multi-source Data Fusion;2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2022-12

5. Impact of Driving Behavior on Commuter’s Comfort During Cab Rides: Towards a New Perspective of Driver Rating;ACM Transactions on Intelligent Systems and Technology;2022-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3