An optimal minimum spanning tree algorithm

Author:

Pettie Seth1,Ramachandran Vijaya1

Affiliation:

1. The University of Texas at Austin, Austin, Texas

Abstract

We establish that the algorithmic complexity of the minimum spanning tree problem is equal to its decision-tree complexity. Specifically, we present a deterministic algorithm to find a minimum spanning tree of a graph with n vertices and m edges that runs in time O ( T * ( m,n )) where T * is the minimum number of edge-weight comparisons needed to determine the solution. The algorithm is quite simple and can be implemented on a pointer machine.Although our time bound is optimal, the exact function describing it is not known at present. The current best bounds known for T * are T * ( m,n ) = Ω( m ) and T * ( m,n ) = O ( m ∙ α( m,n )), where α is a certain natural inverse of Ackermann's function.Even under the assumption that T * is superlinear, we show that if the input graph is selected from G n,m , our algorithm runs in linear time with high probability, regardless of n , m , or the permutation of edge weights. The analysis uses a new martingale for G n,m similar to the edge-exposure martingale for G n,p .

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference28 articles.

1. O jistem problemu minimaalnim;BORUVKA O.;Moravske Prirodovedecke Spolecnosti,1926

Cited by 176 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3