Generative Adversarial Networks for Spatio-temporal Data: A Survey

Author:

Gao Nan1,Xue Hao1,Shao Wei1,Zhao Sichen1,Qin Kyle Kai1,Prabowo Arian1,Rahaman Mohammad Saiedur1,Salim Flora D.1

Affiliation:

1. RMIT University, Melbourne, Victoria, Australia

Abstract

Generative Adversarial Networks (GANs) have shown remarkable success in producing realistic-looking images in the computer vision area. Recently, GAN-based techniques are shown to be promising for spatio-temporal-based applications such as trajectory prediction, events generation, and time-series data imputation. While several reviews for GANs in computer vision have been presented, no one has considered addressing the practical applications and challenges relevant to spatio-temporal data. In this article, we have conducted a comprehensive review of the recent developments of GANs for spatio-temporal data. We summarise the application of popular GAN architectures for spatio-temporal data and the common practices for evaluating the performance of spatio-temporal applications with GANs. Finally, we point out future research directions to benefit researchers in this area.

Funder

Australian Government through the Australian Research Council’s Linkage Projects

Australian Government through the Australian Research Council’s Discovery Project

RMIT Research Stipend Scholarship

CSIRO Data61 Scholarship

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference177 articles.

1. Yelp. 2015. Yelp Open Dataset. Retrieved from https://www.yelp.com/dataset.

2. The New York City Taxi and Limousine Commission (TLC). 2017. TLC Trip Record Data. Retrieved from https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

3. KDD. 2018. KDD Cup of Fresh Air. Retrieved from http://www.kdd.org/kdd2018/kdd-cup.

4. Time-series clustering – A decade review

5. Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3