1. Lenz , I. , Lee , H. , & Saxena , A. ( 2015 ). Deep learning for detecting robotic grasps. The International Journal of Robotics Research, 34 (4–5), 705–724. https://doi.org/10.1177/0278364914549607 10.1177/0278364914549607 Lenz, I., Lee, H., & Saxena, A. (2015). Deep learning for detecting robotic grasps. The International Journal of Robotics Research, 34 (4–5), 705–724. https://doi.org/10.1177/0278364914549607
2. Bohg , J. , Morales , A. , Asfour , T. , & Kragic , D. ( 2013 ). Data-driven grasp synthesis—a survey. IEEE Transactions on Robotics, 30 (2), 289-309 . Bohg, J., Morales, A., Asfour, T., & Kragic, D. (2013). Data-driven grasp synthesis—a survey. IEEE Transactions on Robotics, 30 (2), 289-309.
3. Morrison , D. , Corke , P. , & Leitner , J. ( 2020 ). Learning robust, real-time, reactive robotic grasping. The International journal of robotics research, 39 (2-3), 183-201 . Morrison, D., Corke, P., & Leitner, J. (2020). Learning robust, real-time, reactive robotic grasping. The International journal of robotics research, 39 (2-3), 183-201.
4. Wang , C. , Cao , Y. , Yu , F. , & Tang , Y. ( 2021 , February) . Dynamic Weight of Adaptive Information Density Network for Image Super-Resolution. In 2021 2nd Asia Service Sciences and Software Engineering Conference (pp. 123-129) . Wang, C., Cao, Y., Yu, F., & Tang, Y. (2021, February). Dynamic Weight of Adaptive Information Density Network for Image Super-Resolution. In 2021 2nd Asia Service Sciences and Software Engineering Conference (pp. 123-129).