dWatch

Author:

Xing Tianzhang1,Wang Qing2ORCID,Wu Chase Q.3,Xi Wei4,Chen Xiaojiang1ORCID

Affiliation:

1. School of Information Science and Technology, Shaanxi International Joint Research Centre for the Battery-Free Internet of Things, Northwest University, Xi’an, China

2. School of Information Science and Technology, Northwest University, Xi’an, China

3. Department of Computer Science, New Jersey Institute of Technology, NJ, USA

4. Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China

Abstract

Drowsiness detection is critical to driver safety, considering thousands of deaths caused by drowsy driving annually. Professional equipment is capable of providing high detection accuracy, but the high cost limits their applications in practice. The use of mobile devices such as smart watches and smart phones holds the promise of providing a more convenient, practical, non-invasive method for drowsiness detection. In this article, we propose a real-time driver drowsiness detection system based on mobile devices, referred to as dWatch, which combines physiological measurements with motion states of a driver to achieve high detection accuracy and low power consumption. Specifically, based on heart rate measurements, we design different methods for calculating heart rate variability (HRV) and sensing yawn actions, respectively, which are combined with steering wheel motion features extracted from motion sensors for drowsiness detection. We also design a driving posture detection algorithm to control the operation of the heart rate sensor to reduce system power consumption. Extensive experimental results show that the proposed system achieves a detection accuracy up to 97.1% and reduces energy consumption by 33%.

Funder

China Postdoctoral Science Foundation

Shaanxi Science and Technology Innovation Team

China NSFC

International Cooperation Project of Shaanxi Province

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3