Minimal-overhead virtualization of a large scale supercomputer

Author:

Lange John R.1,Pedretti Kevin2,Dinda Peter3,Bridges Patrick G.4,Bae Chang3,Soltero Philip4,Merritt Alexander5

Affiliation:

1. University of Pittsburgh, Pittsburgh, PA, USA

2. Sandia National Laboratories, Albuquerque, NM, USA

3. Northwestern University, Evanston, IL, USA

4. University of New Mexico, Albuquerque, NM, USA

5. Georgia Institute of Technology, Atlanta, GA, USA

Abstract

Virtualization has the potential to dramatically increase the usability and reliability of high performance computing (HPC) systems. However, this potential will remain unrealized unless overheads can be minimized. This is particularly challenging on large scale machines that run carefully crafted HPC OSes supporting tightly-coupled, parallel applications. In this paper, we show how careful use of hardware and VMM features enables the virtualization of a large-scale HPC system, specifically a Cray XT4 machine, with < = 5% overhead on key HPC applications, microbenchmarks, and guests at scales of up to 4096 nodes. We describe three techniques essential for achieving such low overhead: passthrough I/O, workload-sensitive selection of paging mechanisms, and carefully controlled preemption. These techniques are forms of symbiotic virtualization, an approach on which we elaborate.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SVD: A Scalable Virtual Machine Disk Format;IEEE Transactions on Cloud Computing;2024-04

2. Distributed Deep Learning for Remote Sensing Data Interpretation;Proceedings of the IEEE;2021-08

3. Recent advances in traffic optimisation: systematic literature review of modern models, methods and algorithms;IET Intelligent Transport Systems;2020-12

4. DroidCloud;Proceedings of the 28th ACM International Conference on Multimedia;2020-10-12

5. Non-clairvoyant online scheduling of synchronized jobs on virtual clusters;The Journal of Supercomputing;2018-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3