1. Afia Afrin and Omid Ardakanian. 2023. Adversarial Attacks on Machine Learning-Based State Estimation in Power Distribution Systems. In eEnergy ’23.
2. Utkarsha Agwan, Lucas Spangher, William Arnold, Tarang Srivastava, Kameshwar Poolla, and Costas J Spanos. 2021. Pricing in prosumer aggregations using reinforcement learning. In eEnergy ’21.
3. Carmelo Ardito, Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, Fatemeh Nazary, and Giovanni Servedio. 2023. Machine-learned Adversarial Attacks against Fault Prediction Systems in Smart Electrical Grids. arXiv (2023).
4. Daniel Arp Erwin Quiring Feargus Pendlebury Alexander Warnecke Fabio Pierazzi Christian Wressnegger Lorenzo Cavallaro and Konrad Rieck. 2022. Dos and don’ts of machine learning in computer security. In USENIX Security ’22.
5. Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, 2020. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information fusion (2020).